The Contribution of A. K. Oppenheim to Explaining the Nature of the Initiation of Gaseous Detonation in Tubes

Author:

Kuhl Allen L.1ORCID,Hayashi Antoni Koichi2ORCID,Wolański Piotr3ORCID

Affiliation:

1. Lawrence Livermore National Laboratory , 7000 East Ave, Livermore , , USA

2. Aoyama Gakuin University , 4 Chome-4-25 Shibuya, Shibuya City, Tokyo 150-8366 , Japan

3. Łukasiewicz Research Network – Institute of Aviation , Al. Krakowska 110/114 , Warsaw , Poland

Abstract

Abstract This paper analyzes A.K. Oppenheim’s original works on the transition of deflagration to detonation and reviews them from the perspective of new numerical and experimental results recently obtained on such phenomena. Particular attention is focused on processes happening in the boundary layer of the tube walls ahead of the accelerating flame. The results of the theoretical analyses of temperature variations inside developing boundary layer are presented and compared to the temperature variation in a free stream away from the boundary layer. Analyses of temperature increase in such layers clearly indicate that the self-ignition of the mixture happens in the boundary layer ahead of the propagating flame front. New experimental results obtained recently by a research group from the A. V. Luikov Heat and Mass Transfer Institute in Minsk, Belarus, combined with previously conducted theoretical analyses and numerical simulations, show clearly and unambiguously that the origin of the “explosion in the explosion”, postulated by A. K. Oppenheim in 1966, is always responsible for the Deflagration-Detonation Transition (DDT) in gases and is located in the boundary layer ahead of the accelerating flame front.

Publisher

Walter de Gruyter GmbH

Reference22 articles.

1. [1] Schelkin, K.I. “effect of tube roughness on the occurrence and propagation of detonation in gases”. Zh. Eksp. Teor. Fiz. Vol. 10 No. 7 (1940): pp. 823–827.

2. [2] P. Wolański and S. Wójcicki: “On the mechanism of influence of obstacles on the flame propagation”, Sixth International Colloquia on the Gasdynamics of Explosions and Reactive Systems pp. 69–74. Stockholm, Sweden (1977), also published in Archivum Combustionis, Vol. 1 No. 1/2, (1981).

3. [3] Woliński M. and Wolański P. “Gaseous Detonation Processes in Presence of Inert Particles.” Archivum Combustionis, Vol. 7 No. 3/4 (1987): pp. 353–370.

4. [4] Goral P., Klemens R., and Wolański P. “Mechanism of Gas Flame Acceleration in the Presence of Neutral Particles.” Progress in Astronautics and Aeronautics Vol. 113 (1987): pp. 325–335.10.2514/5.9781600865879.0325.0335

5. [5] Wolański P., Liu J.C., Kauffman C.W., Nicholls J.A., and Sichel M. “The Effects of Inert Particles on Methane-Air Detonations.” Archivum Combustionis Vol. 8 No. 1 (1988): pp. 15–32.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3