Direct versus indirect radiation action in irradiated vegetal embryos

Author:

Vochita Gabriela1,Focea-Ghioc Ramona2,Creanga Dorina3

Affiliation:

1. 1Institute of Biological Research, Iasi, Romania

2. 2University Hospital “Sf. Spiridon”, Iasi, Romania

3. 3Biophysics and Medical Physics, University “Alexandru Ioan Cuza” Faculty of Physics, Iasi, Romania

Abstract

AbstractMaize is one of model plants useful for genetic investigations and also very important for its agrotechnical utilizations. Here the genotoxic effects of low dose X-rays and accelerated electrons in maize caryopses was carried out with focus on the influence of water content at the moment of seed irradiation. X-ray photon beam as well as accelerated electrons were provided with 2.40 Gy min−1 dose rate. Pre-soaked and dry maize caryopses were irradiated with 0.5–3.0–6.0 Gy. Cytogenetic investigations were carried out based on microscope observations of chromosomes stained by Feulgen method. The mitotic index was found diminished in hydrated samples indicating the negative influence of indirect effects of water radicals. As known the water radiolysis release free radicals that attack biomolecules in addition to the directly absorbed radiation impact. Slight positive influence of 0.5 Gy radiation dose on cell division was evidenced. Chromosomal aberrations were identified like: vagrand chromosomes, C-metaphases, picnotic chromosomes, chromatide bridges. General tendency of aberrant mitoses enhancing was recorded in watered samples — with up to the twice increase for 6.0 Gy radiation dose. The results evidenced the hydration role in monitoring cytogenetic effects of low dose radiations in plant systems -with possible biotechnological applications.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3