Glucose inhibits the shoot bud formation in the moss Bryum billarderi

Author:

Zavala Arturo1,Pérez Netzahualcoyotl2,Becerra Analilia1,López Miguel1

Affiliation:

1. 1National Polytechnic Institute, Center of Applied Biotechnology Research, 90700, Tepetitla, Mexico

2. 2National Polytechnic Institute, Genomics Biotechnology Center, 88730, Reynosa, Mexico

Abstract

AbstractPlant development is controlled by certain factors such as nutrient availability, environmental cues and the presence of signalling molecules. It has been proposed that phytohormones interact with sugars to modulate important processes in vascular plants. Cytokinins are key hormones because they regulate a large number of metabolic events, and sugars act as regulatory signals at several points in the life cycle. Bryum bilarderi Schwägr is a moss that was isolated by our group in the central highlands of Mexico and has demonstrated the ability to tolerate abiotic stresses. To study the effect of cytokinins and their interaction with glucose in bud induction, different concentrations of cytokinins with glucose were tested. One micromolar N-6-benzylaminopurine provided the best results for bud induction, but when 100 mM glucose was added, bud formation was inhibited. This glucose concentration also favoured the spread of the protonemal colony. These data demonstrate that N-6-benzylaminopurine is more effective than kinetin in inducing buds, and that glucose plays an important role as an inhibitory signalling molecule for the bud induction process that is mediated by cytokinins in the moss B. billarderi.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3