Changes in cytokine production and morphology of murine lymphoma NK/Ly cells in course of tumor development

Author:

Panchuk Rostyslav1,Boiko Natalia1,Lootsik Maxim1,Stoika Rostyslav1

Affiliation:

1. 1Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005, Lviv, Ukraine

Abstract

AbstractThe main goal of this study was to evaluate if specific cytokine expression in the NK/Ly lymphoma cells might be involved in development of intoxication in the tumor-bearing animals. RT-PCR analysis was used to study an expression of mRNA coding for IL-1α, IL-6, TNF-α, TNF-β and VEGF. ELISA was used to evaluate IL-6 and IFN-γ concentration in the ascitic fluid. Cytomorphological investigation of tumor cells was done after standard Romanovsky-Giemsa staining, and chromatin staining was performed with hematoxyline and neutral red. Lactate dehydrogenase and acid phosphatase release from tumor cells was estimated. It was revealed that the level of mRNA coding for VEGF and IL-6 was significant in the lymphoma cells. The level of VEGF mRNA was initially high and did not change during tumor progression, while the level of expression of IL6 mRNA was low at the initial stages of tumor growth and markedly increased (up to 5-fold) at the terminal stages. The obtained data on IL-6 mRNA expression were confirmed by ELISA, which showed more than 6-fold increase (from 90 to 570 pg/ml) in the IL-6 concentration in the ascitic fluid at late stages of NK/Ly tumor development. On the contrary to IL-6, concentration of IFN-γ in the ascitic fluid was very high at early stages of tumor development (1,000 pg/ml) and it markedly decreased (up to 30-fold, 30 pg/ml) at the terminal stages of tumor development. The high levels of IL-6 mRNA in tumor cells and IL-6 content in extracellular medium correlated with cell deterioration, as revealed by cytomorphologic study and the release of intracellular enzymes into extracellular medium. We suggest that an enhanced production and release of IL-6 by lymphoma cells can cause intoxication and exhaustion of the organism observed at terminal stages of tumor growth.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3