Oxygen radical scavenging capacity of phenolic and non-phenolic compounds in red and white wines

Author:

Scalzo Roberto1,Morassut Massimo2,Rapisarda Paolo3

Affiliation:

1. 1National Council for Agricultural Research (C.R.A.), Research Unit of Food Technology (CRA-IAA), 20133, Milano, Italy

2. 2National Council for Agricultural Research (C.R.A.), Research Unit for Enology of Central Italy (CRA-ENC), 00049, Velletri, Italy

3. 3National Council for Agricultural Research (C.R.A.), Research Center of Citriculture and Mediterranean Crops (CRA-ACM), 95024, Acireale, Italy

Abstract

AbstractThe aim of the present study was the evaluation of the antioxidant content in phenolic and non-phenolic extracts of ten wine samples, trying to elucidate the potential role of unusual antioxidant compounds. Samples of wines processed from red and white grapes (Vitis vinifera L.), deprived of the volatile fraction at low temperature and buffered at physiological pH, were fractionated by C18 into two fractions: FR1 and FR2. Non-phenolics, such as tartaric, malic, lactic, and succinic acids; glucose; fructose; and glycerin were mainly found in FR1, while polyphenols were present exclusively in FR2. Peroxyl radical quenching was assayed by the ORAC method, while superoxide and hydroxyl radical scavenging activity were assayed by electron paramagnetic resonance. In the ORAC and superoxide assays, most of the activity was found in FR2, while in hydroxyl radical assay, the activity was found in FR1. Model solutions were used to attribute a role to the single compounds in the evaluation of wine’s ROS scavenging capacity: the ORAC and superoxide anion scavenging effects were mainly attributed to the polyphenols, averaging 94.8%, with some contribution from glycerin, particularly in white wines. Unexpectedly, the main chemical responsible for hydroxyl radical scavenging activity was glycerin (56.1%), with the polyphenols scavenging at 18.1%.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3