Geometry of the probability simplex and its connection to the maximum entropy method

Author:

Gzyl H.1,Nielsen F.2

Affiliation:

1. Centro de Finanzas , IESA, Caracas 1010, Venezuela

2. S.K. Yadav Sony Computer Science Laboratories , Inc., Tokyo , Japan

Abstract

Abstract The use of geometrical methods in statistics has a long and rich history highlighting many different aspects. These methods are usually based on a Riemannian structure defined on the space of parameters that characterize a family of probabilities. In this paper, we consider the finite dimensional case but the basic ideas can be extended similarly to the infinite-dimensional case. Our aim is to understand exponential families of probabilities on a finite set from an intrinsic geometrical point of view and not through the parameters that characterize some given family of probabilities. For that purpose, we consider a Riemannian geometry defined on the set of positive vectors in a finite-dimensional space. In this space, the probabilities on a finite set comprise a submanifold in which exponential families correspond to geodesic surfaces. We shall also obtain a geometric/dynamic interpretation of Jaynes’ method of maximum entropy.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3