Surmounting antimicrobial resistance in the Millennium Superbug: Staphylococcus aureus

Author:

Saxena Sanjai1,Gomber Charu1

Affiliation:

1. 1Natural Products & Drug Discovery, Department of Biotechnology and Environmental Sciences, Thapar University, Patiala, Punjab, 147004, India

Abstract

AbstractStaphylococcus aureus is the third most dreaded pathogen posing a severe threat due to its refractory behavior against the current armamentarium of antimicrobial drugs. This is attributed to the evolution of an array of resistance mechanisms responsible for morbidity and mortality globally. Local and international travel has resulted in the movement of drug resistant S. aureus clones from hospitals into communities and further into different geographical areas where they have been responsible for epidemic outbreaks. Thus, there is a dire necessity to refrain further cross movement of these multidrug resistant clones across the globe. The plausible alternative to prevent this situation is by thorough implementation of regulatory aspects of sanitation, formulary usage and development of new therapeutic interventions. Various strategies like exploring novel antibacterial targets, high throughput screening of microbes, combinatorial and synthetic chemistry, combinatorial biosynthesis and vaccine development are being extensively sought to overcome multidrug resistant chronic Staphylococcal infections. The majority of the antibacterial drugs are of microbial origin and are prone to being resisted. Anti-staphylococcal plant natural products that may provide a new alternative to overcome the refractory S.aureus under clinical settings have grossly been unnoticed. The present communication highlights the new chemical entities and therapeutic modalities that are entering the pharmaceutical market or are in the late stages of clinical evaluation to overcome multidrug resistant Staphylococcal infections. The review also explores the possibility of immunity and enzyme-based interventions as new therapeutic modalities and highlights the regulatory concerns on the prescription, usage and formulary development in the developed and developing world to keep the new chemical entities and therapeutic modalities viable to overcome antimicrobial resistance in S. aureus.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3