Accuracy of non-invasive intracranial pressure measurement

Author:

Seddighi Amir1,Zadeh Alireza2,Seddighi Afsoun3,Zali Alireza4

Affiliation:

1. 1Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Functional Neurosurgery Research Center of Shohada Tajrish Hospital, Shahrara Park, 1445744454, Tehran, Iran

2. 2Shahed University, Shahrara Park, 1445744454, Tehran, Iran

3. 3Shahid Rajaee Hospital, Qazvin University of Medical Sciences, Functional Neurosurgery Research Center of Shohada Tajrish Hospital, 1445744454, Tehran, Qazvin, Iran

4. 4Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Neurofunctional Research Center of Shohada Tajrish Hospital, 1445744454, Teheran, Iran

Abstract

AbstractNon-invasive measurement of intracranial pressure (ICP) reduces the complications and cost for both patient and health care systems. Improvement of non-invasive methods has led to development of systems for reproducing continuous, real-time non-invasive ICP signals. So far, non-invasive methods have been tailored for the patients with head trauma. We have used Schmidt’s auto-adaptive method to assess the accuracy of this method for patients after surgery for supratentorial brain tumors. Data from forty patients with the diagnosis of brain tumor operated from 2008 to 2010 were used to estimate the accuracy of Schmidt’s method in our patients. We obtained the model parameters from 30 recordings. We determined the ICP wave form for the remaining patients by both invasive and non-invasive techniques. In the test group, by invasive method, the mean ICP±2SD was 17.1 ± 6.6 mmHg and using non-invasive method, the mean ICP ± 2SD was 16.5 ± 5.4 mmHg. The calculated error was 4.6 mmHg using root mean square errors. The average Pearson correlation between the estimated and real waveforms was 0.92. We believe that application of this method is acceptable for post-operative assessment of ICP in brain tumor patients.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Reference17 articles.

1. Aaslid R, Lundar T, Lindegaard KF, Nornes H E. Stimation of cerebral perfusion pressure from arterial blood pressure and transcranial Doppler recordings. In: Miller JD, Teasdale GM, Rowan JO, Galbraith SL, Mendelow AD (eds) Intracranial pressure VI. Springer, Berlin, 226–229, 1993

2. Bundgaard H, Landsfeldt U, Cold GE. Subdural monitoring of ICP during craniotomy: Thresholds of cerebral swelling/ herniation ActaNeurochir Suppl (Wien), 71: 276–278, 1998

3. Chan KH, Miller JD, Dearden NM, Andrews PJ, Midgley S. The effect of changes in cerebral perfusion pressure upon middle cerebral artery blood flow velocity and jugular bulb venous oxygen saturation after severe brain injury. J Neurosurg, 77: 117–130, 1992

4. Constantini S, Cotev S, Rappaport ZH, Pomeranz S, Shalit MN. Intracranial pressure monitoring after elective intracranial surgery.A retrospective study of 514 consecutive patients. J Neurosurg. 69(4): 540–544, 1988

5. Czosnyka M, Matta BF, Smielewski P, Kirkpatrick P, Pickard JD Cerebral perfusion pressure in headinjured patients: a non-invasive assessment using transcranial Doppler ultrasonography. J Neurosurg. 88(5), 802–808, 1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3