Light-dark dependence of electrocardiographic changes during asphyxia and reoxygenation in a rat model
Author:
Bačová Ivana1, Švorc Pavol1, Kundrík Martin1, Fulton Benjamin2
Affiliation:
1. 1Department of Physiology, Medical Faculty, Šafarik University, 040 66, Košice, Slovak Republic 2. 2Nasophlex Slovakia, s.r.o., 040 66, Košice, Slovak Republic
Abstract
AbstractThe aim of this study was to evaluate the effect of ventilation on electrocardiographic time intervals as a function of the light-dark (LD) cycle in an in vivo rat model. RR, PQ, QT and QTc intervals were measured in female Wistar rats anaesthetized with both ketamine and xylazine (100 mg/15 mg/kg, i.m., open chest experiments) after adaptation to the LD cycle (12:12h) for 4 weeks. Electrocardiograms (ECG) were recorded before surgical interventions; after tracheotomy, and thoracotomy, and 5 minutes of stabilization with artificial ventilation; 30, 60, 90 and 120 seconds after the onset of apnoea; and after 5, 10, 15, and 20 minutes of artificial reoxygenation. Time intervals in intact animals showed significant LD differences, except in the QT interval. The initial significant (p<0,001) LD differences in PQ interval and loss of dependence on LD cycle in the QT interval were preserved during short-term apnoea-induced asphyxia (30–60 sec) In contrast, long-term asphyxia (90–120 sec) eliminated LD dependence in the PQ interval, but significant LD differences were shown in the QT interval. Apnoea completely abolished LD differences in the RR interval. Reoxygenation restored the PQ and QT intervals to the pre-asphyxic LD differences, but with the RR intervals, the LD differences were eliminated. We have concluded that myocardial vulnerability is dependent on the LD cycle and on changes of pulmonary ventilation.
Publisher
Walter de Gruyter GmbH
Reference60 articles.
1. Henry R., Casto R., Printz M.P., Diurnal cardiovascular patterns in spontaneously hypertensive and Wistar-Kyoto rats, Hypertension., 1990, 16, 422–428 2. Portaluppi F., Hermida R.C., Circadian rhythms in cardiac arrhythmias and opportunities for their chronotherapy, Chronobiol., 2007, 59, 9–10 3. Waterhouse J., Witte K., Huser L., Nevill A., Atkinson G., Reilly T., Lemmer B., Sensitivity of heart rate and blood pressure to spontaneous activity in transgenic rats, Biol. Rhythm. Res., 2000, 31, 146–159 4. Zhang B.L., Sannajust F., Diurnal rhythmsn of blood pressure, heart rate and locomotor activity in adult and old male Wistar rats, Physiol. Behav., 2000, 70, 375–380 5. Švorc P., Beňačka R., Petrášová D., Effect of systemic hypoxia and reoxygenation on electrical stability of the rat myocardium: Chronophysiological study, Physiol. Res., 2005, 54, 319–325
|
|