A New RMF Stirrer Using AISI4140 Mild Steel: Energy Optimization Application

Author:

Citak Hakan1,Bicakci Sabri2,Coramik Mustafa3,Gunes Huseyin4,Ege Yavuz5

Affiliation:

1. 1 Assoc. Professor, Balikesir University , Balikesir , Turkey

2. 2 Assoc. Professor, Balikesir University , Balikesir , Turkey

3. 3 Assoc. Professor, Balikesir University , Balikesir , Turkey

4. 4 Assoc. Professor, Balikesir University , Balikesir , Turkey

5. 5 Professor, Balikesir University , Balikesir , Turkey

Abstract

Abstract This study examines the development of a novel FPGA-based RMF stirrer system. The system has been designed as a 3-phase system, with each phase being fed by PWM voltage with a phase difference of 120°. In case the system is driven at a 100 % duty cycle, the force acting on the magnetic fish remains continuous and constant until the subsequent phase changes. In such a case, at speeds under 400 rpm, the speed of the magnetic fish fails to be synchronized with the phase change speed. The magnetic fish, therefore, rotates more than 120° and the force is observed to cause a braking effect. Both fluid logic control (FLC) and virtual model control (VMC) were utilised to enable the system to be driven at a different duty cycle. The energy efficiency of the system for fluids with different viscosities has been attempted to be thereby improved with a lower current and shorter excitation time. With FLC and VMC control, the energy consumed by the system is reduced and the efficiency is increased, and approximately 95 % energy gain is obtained for liquids with viscosity up to 1.03 Pa·s. It has been experimentally proven that a lower limit value of the duty cycle of the PWM signal applied to the drive circuit of the system depends on the viscosity of the mixed liquid and a lower limit value increases with increasing viscosity. It has also been found that controlling the system with FLC and VMC does not have a great effect on the energy gain.

Publisher

Riga Technical University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3