Effect of ambient parameters change on mint leaves solar drying

Author:

Noori Abdul Wasim12,Royen Mohammad Jafar12,Haydary Juma1

Affiliation:

1. Institute of Chemical and Environmental Engineering , Slovak University of Technology in Bratislava , Radlinského 9, 81237 Bratislava , Slovakia

2. Faculty of Chemical Technology , Kabul Polytechnic University , Kart-e Mamoorin, Kabul , Afghanistan

Abstract

Abstract This study investigates the effect of ambient conditions change on mint leaves solar drying performance and product water activity. Two drying methods, active indirect solar drying (AISD) and open sun drying (OSD) were compared while the experiments were carried out at specific dry climate conditions. During the experimental days, temperature varied from 20 to 30 °C, air relative humidity from 14 to 28.8 % and ambient pressure was around 82 kPa. The effect of air relative humidity change during the day on the rehydration of the product during the drying process was observed. After 7 h of drying, moisture content of mint leaves decreased from 85.29 % to 5.38 % in the AISD and 7.42 % in the OSD system. The 0.97 initial water activity decreased to 0.195 in AISD and 0.79 in OSD. Rehydration during the evening hours caused an increase in product water activity from 0.2 to 0.51. Changes of ambient conditions such as temperature and air relative humidity during the day can significantly affect water activity of dried product due to its rehydration and thus increase the risk of product spoilage.

Publisher

Walter de Gruyter GmbH

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3