Invariance property of a five matrix product involving two generalized inverses

Author:

Jiang Bo1,Tian Yongge2

Affiliation:

1. Shandong Institute of Business and Technology , Yantai , China .

2. Shanghai Business School , Shanghai , China .

Abstract

Abstract Matrix expressions composed by generalized inverses can generally be written as f(A 1, A 2, . . ., A k ), where A 1, A 2, . . ., A k are a family of given matrices of appropriate sizes, and (·) denotes a generalized inverse of matrix. Once such an expression is given, people are primarily interested in its uniqueness (invariance property) with respect to the choice of the generalized inverses. As such an example, this article describes a general method for deriving necessary and sufficient conditions for the matrix equality A 1 A 2 A 3 A 4 A 5 = A to always hold for all generalized inverses A 2 and A 4 of A 2 and A 4 through use of the block matrix representation method and the matrix rank method, and discusses some special cases of the equality for different choices of the five matrices.

Publisher

Walter de Gruyter GmbH

Reference16 articles.

1. [1] J.K. Baksalary, O.M. Baksalary. An invariance property related to the reverse order law. Linear Algebra Appl. 410(2005), 64–69.

2. [2] A. Ben–Israel, T.N.E. Greville. Generalized Inverses: Theory and Applications. 2nd ed., Springer, New York, 2003.

3. [3] S.L. Campbell, C.D. Meyer. Generalized Inverses of Linear Transformations. Corrected reprint of the 1979 original, Dover, New York, 1991.

4. [4] J. Groß, Y. Tian. Invariance properties of a triple matrix product involving generalized inverses. Linear Algebra Appl. 417(2006), 94–107.

5. [5] R.E. Hartwig. The reverse order law revisited. Linear Algebra Appl. 76(1986), 241–246.10.1016/0024-3795(86)90226-0

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3