A Mean Ergodic Theorem for Affine Nonexpansive Mappings in Nonpositive Curvature Metric Spaces

Author:

Khatibzadeh Hadi1,Pouladi Hadi1

Affiliation:

1. Department of Mathematics , University of Zanjan , 45195-313, Zanjan, Iran .

Abstract

Abstract In this paper, we consider the orbits of an affine nonexpansive mapping in Hadamard (nonpositive curvature metric) spaces and prove an ergodic theorem for the inductive mean, which extends the von Neumann linear ergodic theorem. The main result shows that the sequence given by the inductive means of iterations of an affine nonexpansive mapping with a nonempty fixed point set converges strongly to a fixed point of the mapping. A Tauberian theorem is also proved in order to ensure convergence of the iterations.

Publisher

Walter de Gruyter GmbH

Reference17 articles.

1. [1] B. Ahmadi Kakavandi and M. Amini, Non-linear ergodic theorems in complete non-positive curvature metric spaces, Bull. Iranian Math. Soc. 37 (2011), no. 3, 11–20.

2. [2] K. Aoyama, Y. Kimura, W. Takahashi, and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), no. 8, 2350 – 2360.

3. [3] M. Bacak, Convex analysis and optimization in Hadamard spaces, De Gruyter Series in Nonlinear Analysis and Applications, 22. De Gruyter, 2014.10.1515/9783110361629

4. [4] G. Birkhoff, The mean ergodic theorem, Duke Math. J. 5 (1939), no. 1, 19–20.

5. [5] M. R. Bridson and A. Hafliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften, Springer Berlin Heidelberg, 2011.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3