Study of structural and morphological properties of RF-sputtered SnO2 thin films and their effect on gas-sensing phenomenon

Author:

Arora Ajay Kumar1,Mahajan Sandeep2,Verma Maya3,Haridas Divya1

Affiliation:

1. 1 Keshav Mahavidyalaya , University of Delhi , Delhi , India

2. 2 Centre of Materials for Electronic Technology (C-MET), Industrial Development Area (IDA) Phase-III, Cherlapally, Hindustan Cables Limited (HCL) (PO) , Hyderabad , India

3. 3 Hansraj College , University of Delhi , Delhi , India

Abstract

Abstract The present work focuses on understanding the impact of varying the thickness of SnO2 thin films on its gas-sensing response. Systematic studies were conducted by X-ray diffraction (XRD) and atomic force microscopy (AFM) on the structural and morphological properties of SnO2 thin films, which were thereafter correlated for a deeper understanding of the sensing phenomenon. The structural and morphological properties of SnO2 thin films were found to be highly dependent on the film thickness. The 90 nm SnO2 thin film exhibits the maximum sensing response to 200 ppm liquefied petroleum gas (LPG). A rough microstructure and the maximum surface-to-volume ratio of the 90 nm SnO2 thin film favors the gas-sensing response. It also possesses the smallest grain size, with the majority of crystallites oriented along the preferred (110) plane. The results suggest the possibility of utilizing the 90 nm SnO2 thin film as a base material, which can be further modified using a catalyst for the efficient detection of LPG gas in the future.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3