Hyper-parameter optimization in neural-based translation systems: A case study

Author:

Datta Goutam12,Joshi Nisheeth1,Gupta Kusum1

Affiliation:

1. Deparment of Mathematical and Computer Science , Banasthali Vidyapeeth , Rajasthan , India

2. School of Computer Science , University of Petroleum and Energy Studies , Dehradun , India

Abstract

Abstract Machine translation (MT) is an important use case in natural language processing (NLP) that converts a source language to a target language automatically. Modern intelligent system or artificial intelligence (AI) uses a machine learning approach and the machine has acquired learning ability using datasets. Nowadays, in the MT domain, the neural machine translation (NMT) system has almost replaced the statistical machine translation (SMT) system. The NMT systems use a deep learning framework in their implementation. To achieve higher accuracy during the training of the NMT model, extensive hyper-parameter tuning is required. The paper highlights the significance of hyper-parameter tuning in various machine learning algorithms. And as a case study, in-house experimentation was conducted on a low-resource English–Bangla language pair by designing an NMT system and the significance of various hyper-parameter optimizations was analyzed while evaluating its performance with an automatic metric BLEU. The BLEU scores obtained for the first, second, and third randomly picked test sentences are 4.1, 3.2, and 3.01, respectively.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3