Method for Enhanced Accuracy in Machining Free-Form Surfaces on CNC Milling Machines

Author:

Werner Andrzej1ORCID

Affiliation:

1. Faculty of Mechanical Engineering , Bialystok University of Technology , ul. Wiejska 45C, 15-351 Bialystok , Poland

Abstract

Abstract The present article describes a method for enhanced accuracy in machining free-form surfaces produced on CNC milling machines. In this method, surface patch machining programs are generated based on their nominal CAD model. After the pretreatment, coordinate control measurements are carried out. The obtained results of the measurements contain information on the values and distribution of observed machining deviations. These data, after appropriate processing, are used to build a corrected CAD model of the surface produced. This model, made using reverse engineering techniques, compensates for the observed machining deviations. After regeneration of machining programs, the object processing and control measurements are repeated. As a result of the conducted procedure, the accuracy of the manufacture of the surface object is increased. This article also proposes the introduction of a simple procedure for the filtration of measurement data. Its purpose is to minimise the effect of random phenomena on the final machining error correction. The final part of the article presents the effects of the proposed method of increasing the accuracy of manufacturing on ‘raw’ and filtered measurement data. In both cases, a significant improvement in the accuracy of the machining process was achieved, with better final results obtained from the filtered measurement data. The method proposed in the article has been verified for three-axis machining with a ball-end cutter.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3