Affiliation:
1. Department of Pure Mathematics, Faculty of Science , Imam Khomeini International University , P. O. Box 34149-16818 , Qazvin , Iran
Abstract
Abstract
This article shows the existence and multiplicity of weak solutions for the singular subelliptic system on the Heisenberg group
{
-
Δ
ℍ
n
u
+
a
(
ξ
)
u
(
|
z
|
4
+
t
2
)
1
2
=
λ
F
u
(
ξ
,
u
,
v
)
i
n
Ω
,
-
Δ
ℍ
n
v
+
b
(
ξ
)
v
(
|
z
|
4
+
t
2
)
1
2
=
λ
F
v
(
ξ
,
u
,
v
)
i
n
Ω
,
u
=
v
=
0
o
n
∂
Ω
.
\left\{ {\matrix{ { - {\Delta _{{\mathbb{H}^n}}}u + a\left( \xi \right){u \over {{{\left( {{{\left| z \right|}^4} + {t^2}} \right)}^{{1 \over 2}}}}} = \lambda {F_u}\left( {\xi ,u,v} \right)} \hfill & {in\,\,\,\Omega ,} \hfill \cr { - {\Delta _{{\mathbb{H}^n}}}v + b\left( \xi \right){v \over {{{\left( {{{\left| z \right|}^4} + {t^2}} \right)}^{{1 \over 2}}}}} = \lambda {F_v}\left( {\xi ,u,v} \right)} \hfill & {in\,\,\,\Omega ,} \hfill \cr {u = v = 0} \hfill & {on\,\,\partial \Omega .} \hfill \cr } } \right.
The approach is based on variational methods.
Reference17 articles.
1. [1] Y. B. Band and Y. Avishai, Quantum mechanics with applications to nanotechnology and information science, Academic Press. (2013).10.1016/B978-0-444-53786-7.00005-8
2. [2] I. Birindelli, F. Ferrari and E. Valdinoci, Semilinear PDEs in the Heisenberg group: the role of the right invariant vector fields, Nonlinear Anal., 72 (2010), 987–997.10.1016/j.na.2009.07.039
3. [3] G. Bonanno and G. M. Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., 2009 (2009), Art. ID 670675.10.1155/2009/670675
4. [4] G. Bonanno, G. M. Bisci and V. RȈadulescu, Qualitative analysis of gradient-type systems with oscillatory nonlinearities on the Sierpiński gasket, Chin. Ann. Math., 34, (2013), No. 3, 381–398.10.1007/s11401-013-0772-1
5. [5] S. Everett, A (Mostly) Coherent talk on the Heisenberg Group (2017). group. Indiana Univ. Math. J. 41 (1992), No. 1, 71–98.