Composition iterates, Cauchy, translation, and Sincov inclusions

Author:

Fechner Włodzimierz1,Száz Árpád2

Affiliation:

1. Institute of Mathematics , Lodz University of Technology , 90-924 Lódź , Poland

2. Institute of Mathematics , University of Debrecen , H-4002 Debrecen , Hungary

Abstract

Abstract Improving and extending some ideas of Gottlob Frege from 1874 (on a generalization of the notion of the composition iterates of a function), we consider the composition iterates ϕn of a relation ϕ on X, defined by ϕ 0 = Δ x , ϕ n = ϕ ϕ n - 1  if n 𝕅 , and  ϕ = n = 0 ϕ n . {\varphi ^0} = {\Delta _x},\,\,{\varphi ^n} = \varphi \circ {\varphi ^{n - 1}}{\rm{ if n}} \in \mathbb{N,}\,\,{\rm{and }}\,\,{\varphi ^\infty } = \bigcup\limits_{n = 0}^\infty {{\varphi ^n}} . In particular, by using the relational inclusion ϕn ϕm ϕn+m with n, m ∈ 𝕅 ¯ 0 \mathbb{\bar {N}_0}} , we show that the function α, defined by α ( n ) = ϕ n for  n 𝕅 ¯ 0 , \alpha \left( n \right) = {\varphi ^{\rm{n}}}\,\,\,{\rm{for n}} \in {{\rm\mathbb{\bar N}}_{\rm{0}}}, satisfies the Cauchy problem α ( n ) α ( m ) α ( n + m ) , α ( 0 ) = Δ x . \alpha \left( n \right) \circ \alpha \left( {\rm{m}} \right) \subseteq \alpha \left( {{\rm{n}} + {\rm{m}}} \right),\,\,\,\alpha \left( 0 \right) = {\Delta _{\rm{x}}}. Moreover, the function f, defined by f ( n , A ) = α ( n ) [ A ] for n 𝕅 ¯ 0 and A X , {\rm{f}}\left( {{\rm{n}},{\rm{A}}} \right) = \alpha \left( {\rm{n}} \right)\left[ {\rm{A}} \right]\,\,\,{\rm{for}}\,{\rm{n}} \in {{\rm\mathbb{\bar {N}}}_{\rm{0}}}\,\,{\rm{and}}\,{\rm{A}} \subseteq {\rm{X,}} satisfies the translation problem f ( n , f ( m , A) ) f ( n + m , A ) , f ( 0 , A ) = A . {\rm{f}}\left( {{\rm{n}},f(m,{\rm{A)}}} \right) \subseteq {\rm{f}}\left( {{\rm{n}} + {\rm{m,A}}} \right),\,\,\,{\rm{f}}\left( {0,{\rm{A}}} \right) = {\rm{A}}{\rm{.}} Furthermore, the function F, defined by F ( A , B ) = { n 𝕅 ¯ 0 : A f ( n , B ) } for A , B X , {\rm{F}}\left( {{\rm{A}},{\rm{B}}} \right) = \left\{ {{\rm{n}} \in {{{\rm\mathbb{\bar {N}}}}_{\rm{0}}}:\,\,{\rm{A}} \subseteq {\rm{f}}\left( {{\rm{n}},{\rm{B}}} \right)} \right\}\,\,{\rm{for}}\,\,{\rm{A,B}} \subseteq {\rm{X,}} satisfies the Sincov problem F ( A , B ) + F ( B , C ) F ( A , C ) , 0 F ( A , A ) . {\rm{F}}\left( {{\rm{A}},{\rm{B}}} \right) + {\rm{F}}\left( {{\rm{B}},{\rm{C}}} \right) \subseteq {\rm{F}}\left( {{\rm{A,C}}} \right),\,\,\,\,0 \in {\rm{F}}\left( {{\rm{A}},{\rm{A}}} \right). Motivated by the above observations, we investigate a function F on the product set X2 to the power groupoid 𝒫(U) of an additively written groupoid U which is supertriangular in the sense that F ( x , y ) + F ( y , z ) F ( x , z ) {\rm{F}}\left( {{\rm{x}},{\rm{y}}} \right) + {\rm{F}}\left( {{\rm{y}},{\rm{z}}} \right) \subseteq {\rm{F}}\left( {{\rm{x}},{\rm{z}}} \right) for all x, y, z ∈ X. For this, we introduce the convenient notations R ( x , y ) = F ( y , x ) and S ( x , y ) = F ( x , y ) + R ( x , y ) , {\rm{R}}\left( {{\rm{x}},{\rm{y}}} \right) = {\rm{F}}\left( {{\rm{y}},{\rm{x}}} \right)\,\,\,{\rm{and}}\,\,{\rm{S}}\left( {{\rm{x}},{\rm{y}}} \right) = {\rm{F}}\left( {{\rm{x}},{\rm{y}}} \right) + {\rm{R}}\left( {{\rm{x}},{\rm{y}}} \right), and Φ ( x ) = F ( x , x ) and Ψ ( x ) y X S ( x , y ) . \Phi \left( {\rm{x}} \right) = {\rm{F}}\left( {{\rm{x}},{\rm{x}}} \right)\,\,{\rm{and}}\,\,\Psi \left( {\rm{x}} \right)\bigcup\limits_{{\rm{y}} \in {\rm{X}}} {{\rm{S}}\left( {{\rm{x}},{\rm{y}}} \right).} Moreover, we gradually assume that U and F have some useful additional properties. For instance, U has a zero, U is a group, U is commutative, U is cancellative, or U has a suitable distance function; while F is nonpartial, F is symmetric, skew symmetric, or single-valued.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference41 articles.

1. [1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York, 1966.

2. [2] M. Alimohammady, S. Jafari, S. P. Moshokoa and M. K. Kalleji, A note on properties of hypermetric spaces, J. Hyperstructures, 3 (2014), 89–100.

3. [3] P. Augustová and L. Klapka, Atlas as solutions of Sincov’s inequality, arXiv: 1612.00355v1 [math.DS] 1 Dec 2016, 7 pp.

4. [4] J. A. Baker, Solution of problem E 2607, Amer. Math. Monthly, 84 (1977), 824–825.

5. [5] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ., 25, Providence, Rhode Island, 1967.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3