Affiliation:
1. Institute of Mathematics , Lodz University of Technology , 90-924 Lódź , Poland
2. Institute of Mathematics , University of Debrecen , H-4002 Debrecen , Hungary
Abstract
Abstract
Improving and extending some ideas of Gottlob Frege from 1874 (on a generalization of the notion of the composition iterates of a function), we consider the composition iterates ϕn of a relation ϕ on X, defined by
ϕ
0
=
Δ
x
,
ϕ
n
=
ϕ
∘
ϕ
n
-
1
if n
∈
,
and
ϕ
∞
=
∪
n
=
0
∞
ϕ
n
.
{\varphi ^0} = {\Delta _x},\,\,{\varphi ^n} = \varphi \circ {\varphi ^{n - 1}}{\rm{ if n}} \in \mathbb{N,}\,\,{\rm{and }}\,\,{\varphi ^\infty } = \bigcup\limits_{n = 0}^\infty {{\varphi ^n}} .
In particular, by using the relational inclusion ϕn
◦ϕm
⊆ ϕn+m with n, m ∈
¯
0
\mathbb{\bar {N}_0}}
, we show that the function α, defined by
α
(
n
)
=
ϕ
n
for n
∈
¯
0
,
\alpha \left( n \right) = {\varphi ^{\rm{n}}}\,\,\,{\rm{for n}} \in {{\rm\mathbb{\bar N}}_{\rm{0}}},
satisfies the Cauchy problem
α
(
n
)
∘
α
(
m
)
⊆
α
(
n
+
m
)
,
α
(
0
)
=
Δ
x
.
\alpha \left( n \right) \circ \alpha \left( {\rm{m}} \right) \subseteq \alpha \left( {{\rm{n}} + {\rm{m}}} \right),\,\,\,\alpha \left( 0 \right) = {\Delta _{\rm{x}}}.
Moreover, the function f, defined by
f
(
n
,
A
)
=
α
(
n
)
[
A
]
for
n
∈
¯
0
and
A
⊆
X
,
{\rm{f}}\left( {{\rm{n}},{\rm{A}}} \right) = \alpha \left( {\rm{n}} \right)\left[ {\rm{A}} \right]\,\,\,{\rm{for}}\,{\rm{n}} \in {{\rm\mathbb{\bar {N}}}_{\rm{0}}}\,\,{\rm{and}}\,{\rm{A}} \subseteq {\rm{X,}}
satisfies the translation problem
f
(
n
,
f
(
m
,
A)
)
⊆
f
(
n
+
m
,
A
)
,
f
(
0
,
A
)
=
A
.
{\rm{f}}\left( {{\rm{n}},f(m,{\rm{A)}}} \right) \subseteq {\rm{f}}\left( {{\rm{n}} + {\rm{m,A}}} \right),\,\,\,{\rm{f}}\left( {0,{\rm{A}}} \right) = {\rm{A}}{\rm{.}}
Furthermore, the function F, defined by
F
(
A
,
B
)
=
{
n
∈
¯
0
:
A
⊆
f
(
n
,
B
)
}
for
A
,
B
⊆
X
,
{\rm{F}}\left( {{\rm{A}},{\rm{B}}} \right) = \left\{ {{\rm{n}} \in {{{\rm\mathbb{\bar {N}}}}_{\rm{0}}}:\,\,{\rm{A}} \subseteq {\rm{f}}\left( {{\rm{n}},{\rm{B}}} \right)} \right\}\,\,{\rm{for}}\,\,{\rm{A,B}} \subseteq {\rm{X,}}
satisfies the Sincov problem
F
(
A
,
B
)
+
F
(
B
,
C
)
⊆
F
(
A
,
C
)
,
0
∈
F
(
A
,
A
)
.
{\rm{F}}\left( {{\rm{A}},{\rm{B}}} \right) + {\rm{F}}\left( {{\rm{B}},{\rm{C}}} \right) \subseteq {\rm{F}}\left( {{\rm{A,C}}} \right),\,\,\,\,0 \in {\rm{F}}\left( {{\rm{A}},{\rm{A}}} \right).
Motivated by the above observations, we investigate a function F on the product set X2 to the power groupoid 𝒫(U) of an additively written groupoid U which is supertriangular in the sense that
F
(
x
,
y
)
+
F
(
y
,
z
)
⊆
F
(
x
,
z
)
{\rm{F}}\left( {{\rm{x}},{\rm{y}}} \right) + {\rm{F}}\left( {{\rm{y}},{\rm{z}}} \right) \subseteq {\rm{F}}\left( {{\rm{x}},{\rm{z}}} \right)
for all x, y, z ∈ X. For this, we introduce the convenient notations
R
(
x
,
y
)
=
F
(
y
,
x
)
and
S
(
x
,
y
)
=
F
(
x
,
y
)
+
R
(
x
,
y
)
,
{\rm{R}}\left( {{\rm{x}},{\rm{y}}} \right) = {\rm{F}}\left( {{\rm{y}},{\rm{x}}} \right)\,\,\,{\rm{and}}\,\,{\rm{S}}\left( {{\rm{x}},{\rm{y}}} \right) = {\rm{F}}\left( {{\rm{x}},{\rm{y}}} \right) + {\rm{R}}\left( {{\rm{x}},{\rm{y}}} \right),
and
Φ
(
x
)
=
F
(
x
,
x
)
and
Ψ
(
x
)
∪
y
∈
X
S
(
x
,
y
)
.
\Phi \left( {\rm{x}} \right) = {\rm{F}}\left( {{\rm{x}},{\rm{x}}} \right)\,\,{\rm{and}}\,\,\Psi \left( {\rm{x}} \right)\bigcup\limits_{{\rm{y}} \in {\rm{X}}} {{\rm{S}}\left( {{\rm{x}},{\rm{y}}} \right).}
Moreover, we gradually assume that U and F have some useful additional properties. For instance, U has a zero, U is a group, U is commutative, U is cancellative, or U has a suitable distance function; while F is nonpartial, F is symmetric, skew symmetric, or single-valued.
Reference41 articles.
1. [1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York, 1966.
2. [2] M. Alimohammady, S. Jafari, S. P. Moshokoa and M. K. Kalleji, A note on properties of hypermetric spaces, J. Hyperstructures, 3 (2014), 89–100.
3. [3] P. Augustová and L. Klapka, Atlas as solutions of Sincov’s inequality, arXiv: 1612.00355v1 [math.DS] 1 Dec 2016, 7 pp.
4. [4] J. A. Baker, Solution of problem E 2607, Amer. Math. Monthly, 84 (1977), 824–825.
5. [5] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ., 25, Providence, Rhode Island, 1967.