Affiliation:
1. Eötvös Loránd University , Hungary
Abstract
Abstract
In this article, we are going to look at the requirements regarding a monotone function f ∈ ℝ →ℝ ≥0, and regarding the sets of natural numbers
(
A
i
)
i
=
1
∞
⊆
d
m
n
(
f
)
\left( {{A_i}} \right)_{i = 1}^\infty \subseteq dmn\left( f \right)
, which requirements are sufficient for the asymptotic
∑
n
∈
A
N
P
(
n
)
≤
N
θ
f
(
n
)
∼
ρ
(
1
/
θ
)
∑
n
∈
A
N
f
(
n
)
\sum\limits_{\matrix{{n \in {A_N}} \hfill \cr {P\left( n \right) \le {N^\theta }} \hfill \cr } } {f\left( n \right) \sim \rho \left( {1/\theta } \right)\sum\limits_{n \in {A_N}} {f\left( n \right)} }
to hold, where N is a positive integer, θ ∈ (0, 1) is a constant, P(n) denotes the largest prime factor of n, and ρ is the Dickman function.
Reference7 articles.
1. [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, (1976).
2. [2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, The MIT Press, third edition, (2009).
3. [3] E. Croot, On a combinatorial method for counting smooth numbers in sets of integers, J. Number Theory, 126 (2007), 237–253.
4. [4] K. Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat. Astr. Fys., 22 (1930), 1–14.
5. [5] D. H. Greene, D. E. Knuth, Mathematics for the Analysis of Algorithms, Birkhäuser, third edition, (1990).