Analysis and optimisation of a M/M/1/WV queue with Bernoulli schedule vacation interruption and customer’s impatience

Author:

Majid Shakir1,Bouchentouf Amina Angelika2,Guendouzi Abdelhak3

Affiliation:

1. Department of Mathematics , University of Ladakh , India

2. Laboratory Mathematics , Djillali Liabes University of Sidi Bel Abbes , Algeria

3. Laboratory of Stochastic Models Statistic and Applications , Dr. Tahar Moulay University of Saida , Algeria

Abstract

Abstract In this investigation, we establish a steady-state solution of an infinite-space single-server Markovian queueing system with working vacation (WV), Bernoulli schedule vacation interruption, and impatient customers. Once the system becomes empty, the server leaves the system and takes a vacation with probability p or a working vacation with probability 1 − p, where 0 ≤ p ≤ 1. The working vacation period is interrupted if the system is non empty at a service completion epoch and the server resumes its regular service period with probability 1 − q or carries on with the working vacation with probability q. During vacation and working vacation periods, the customers may be impatient and leave the system. We use a probability generating function technique to obtain the expected number of customers and other system characteristics. Stochastic decomposition of the queueing model is given. Then, a cost function is constructed by considering different cost elements of the system states, in order to determine the optimal values of the service rate during regular busy period, simultaneously, to minimize the total expected cost per unit time by using a quadratic fit search method (QFSM). Further, by taking illustration, numerical experiment is performed to validate the analytical results and to examine the impact of different parameters on the system characteristics.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3