Towards Robustness in Neural Network Based Fault Diagnosis

Author:

Patan Krzysztof,Witczak Marcin,Korbicz Józef

Abstract

Towards Robustness in Neural Network Based Fault DiagnosisChallenging design problems arise regularly in modern fault diagnosis systems. Unfortunately, classical analytical techniques often cannot provide acceptable solutions to such difficult tasks. This explains why soft computing techniques such as neural networks become more and more popular in industrial applications of fault diagnosis. Taking into account the two crucial aspects, i.e., the nonlinear behaviour of the system being diagnosed as well as the robustness of a fault diagnosis scheme with respect to modelling uncertainty, two different neural network based schemes are described and carefully discussed. The final part of the paper presents an illustrative example regarding the modelling and fault diagnosis of a DC motor, which shows the performance of the proposed strategy.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference41 articles.

1. Diagnosis and Fault-Tolerant Control

2. Robust Model-Based Fault Diagnosis for Dynamic Systems

3. Set membership estimation of parameters and variables in dynamic networks by recursive algorithms with a moving measurement window;K. Duzinkiewicz;International Journal of Applied Mathematics and Computer Science,2006

4. New developments using AI in fault diagnosis;P. Frank;Engineering Applications of Artificial Intelligence,1997

5. Hierarchical motor diagnosis utilising structural knowledge and a self-learning neuro-fuzzy scheme;D. Fuessel;IEEE Transactions on Industrial Electronics,2000

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ЗАСТОСУВАННЯ КОГНІТИВНИХ СИСТЕМ ДЛЯ ДІАГНОСТИКИ ТРАНСПОРТНИХ ЗАСОБІВ;Молодий вчений;2023-02-28

2. A literature review and future research agenda on fault detection and diagnosis studies in marine machinery systems;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2023-01-31

3. Spike patterns and chaos in a map-based neuron model;International Journal of Applied Mathematics and Computer Science;2023

4. Finding the optimal multilayer network structure through reinforcement learning in fault diagnosis;Measurement;2022-01

5. Prospects for the Use of Free Software Systems of Corporations in the Automotive and Oil and Gas Industries;International Scientific Siberian Transport Forum TransSiberia - 2021;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3