Novel optimal recursive filter for state and fault estimation of linear stochastic systems with unknown disturbances

Author:

Khémiri Karim,Hmida Fayçal,Ragot José,Gossa Moncef

Abstract

Novel optimal recursive filter for state and fault estimation of linear stochastic systems with unknown disturbancesThis paper studies recursive optimal filtering as well as robust fault and state estimation for linear stochastic systems with unknown disturbances. It proposes a new recursive optimal filter structure with transformation of the original system. This transformation is based on the singular value decomposition of the direct feedthrough matrix distribution of the fault which is assumed to be of arbitrary rank. The resulting filter is optimal in the sense of the unbiased minimum-variance criteria. Two numerical examples are given in order to illustrate the proposed method, in particular to solve the estimation of the simultaneous actuator and sensor fault problem and to make a comparison with the existing literature results.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference19 articles.

1. Ben Hmida, F., Khémiri, K., Ragot, J. and Gossa, M. (2010). Unbiased minimum-variance filter for state and fault estimation of linear time-varying systems with unknown disturbances, Mathematical Problems in Engineering, Vol. 2010, Article ID 343586, 17 pages.

2. Optimal filtering and robust fault diagnosis of stochastic system with unknown disturbances;J. Chen;IEE Proceedings: Control Theory Application,1996

3. Robust Model-Based Fault Diagnosis for Dynamic Systems

4. Unbiased minimum-variance state estimation for linear systems with unknown input;Y. Cheng;Automatica,2009

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3