Performance evaluation of MapReduce using full virtualisation on a departmental cloud

Author:

González-Vélez Horacio,Kontagora Maryam

Abstract

Performance evaluation of MapReduce using full virtualisation on a departmental cloudThis work analyses the performance of Hadoop, an implementation of the MapReduce programming model for distributed parallel computing, executing on a virtualisation environment comprised of 1+16 nodes running the VMWare workstation software. A set of experiments using the standard Hadoop benchmarks has been designed in order to determine whether or not significant reductions in the execution time of computations are experienced when using Hadoop on this virtualisation platform on a departmental cloud. Our findings indicate that a significant decrease in computing times is observed under these conditions. They also highlight how overheads and virtualisation in a distributed environment hinder the possibility of achieving the maximum (peak) performance.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference31 articles.

1. A view of cloud computing;M. Armbrust;Communications of the ACM,2010

2. SkIE: A heterogeneous environment for HPC applications;B. Bacci;Parallel Computing,1999

3. Scheduling divisible loads on star and tree networks: Results and open problems;O. Beaumont;IEEE Transactions on Parallel and Distributed Systems,2005

4. Map, reduce and MapReduce, the skeleton way;D. Buono;Procedia Computer Science,2010

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parallelizing user–defined functions in the ETL workflow using orchestration style sheets;International Journal of Applied Mathematics and Computer Science;2019-03-01

2. Hashtag# Perspicacity of India Region Using Scalable Big Data Infrastructure Using Hadoop Environment;Social Networks Science: Design, Implementation, Security, and Challenges;2018

3. Virtual machine-based task scheduling algorithm in a cloud computing environment;Tsinghua Science and Technology;2016-12

4. Novel Data-Distribution Technique for Hadoop in Heterogeneous Cloud Environments;2015 Ninth International Conference on Complex, Intelligent, and Software Intensive Systems;2015-07

5. Using a vision cognitive algorithm to schedule virtual machines;International Journal of Applied Mathematics and Computer Science;2014-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3