Bayesian reliability models of Weibull systems: State of the art

Author:

Zaidi Abdelaziz1,Ould Bouamama Belkacem2,Tagina Moncef1

Affiliation:

1. LACS National School of Engineering of Tunis, BP 37, 1002 Belvedere, Tunisia

2. LAGIS, Polytech’Lille University of Lille Nord de France, 59650 Villeneuve d’Ascq, France

Abstract

Abstract In the reliability modeling field, we sometimes encounter systems with uncertain structures, and the use of fault trees and reliability diagrams is not possible. To overcome this problem, Bayesian approaches offer a considerable efficiency in this context. This paper introduces recent contributions in the field of reliability modeling with the Bayesian network approach. Bayesian reliability models are applied to systems with Weibull distribution of failure. To achieve the formulation of the reliability model, Bayesian estimation of Weibull parameters and the model’s goodness-of-fit are evoked. The advantages of this modelling approach are presented in the case of systems with an unknown reliability structure, those with a common cause of failures and redundant ones. Finally, we raise the issue of the use of BNs in the fault diagnosis area.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reliability evaluation in the zero‐failure Weibull case based on double‐modified hierarchical Bayes;Quality and Reliability Engineering International;2024-05-08

2. Bond Graphs and Bayesian Networks Based Fault Diagnosis: Application to a Photovoltaic Power Supply;2023 IEEE International Conference on Artificial Intelligence & Green Energy (ICAIGE);2023-10-12

3. A simulation study on the insurance claims distribution using Weibull distribution;Economic Analysis Letters;2023-07-17

4. Feature Ranking Importance from Multimodal Radiomic Texture Features using Machine Learning Paradigm: A Biomarker to Predict the Lung Cancer;Big Data Research;2022-08

5. Weibull Distribution for claims modelling: A Bayesian Approach;2022 International Conference on Decision Aid Sciences and Applications (DASA);2022-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3