A hierarchical decomposition of decision process Petri nets for modeling complex systems

Author:

Clempner Julio

Abstract

A hierarchical decomposition of decision process Petri nets for modeling complex systemsWe provide a framework for hierarchical specification called Hierarchical Decision Process Petri Nets (HDPPNs). It is an extension of Decision Process Petri Nets (DPPNs) including a hierarchical decomposition process that generates less complex nets with equivalent behavior. As a result, the complexity of the analysis for a sophisticated system is drastically reduced. In the HDPPN, we represent the mark-dynamic and trajectory-dynamic properties of a DPPN. Within the framework of the mark-dynamic properties, we show that the HDPPN theoretic notions of (local and global) equilibrium and stability are those of the DPPN. As a result in the trajectory-dynamic properties framework, we obtain equivalent characterizations of that of the DPPN for final decision points and stability. We show that the HDPPN mark-dynamic and trajectory-dynamic properties of equilibrium, stability and final decision points coincide under some restrictions. We propose an algorithm for optimum hierarchical trajectory planning. The hierarchical decomposition process is presented under a formal treatment and is illustrated with application examples.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference18 articles.

1. H-SMIL-Net: A hierarchical Petri net model for SMIL documents;S. Bouyakoub,2008

2. Extending games with local and robust Lyapunov equilibrium and stability condition;J. Clempner;International Journal of Pure and Applied Mathematics,2005a

3. Optimizing the decision process on Petri nets via a Lyapunov-like function;J. Clempner;International Journal of Pure and Applied Mathematics,2005b

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3