The Impact of Hindlimb Suspension on the Rat Eye: A Molecular and Histological Analysis of the Retina

Author:

Theriot Corey A.12,Chevez-Barrios Patricia3,Loughlin Thomas3,Beheshti Afshin4,Mercaldo Nathaniel D.2,Zanello Susana B.2

Affiliation:

1. University of Texas Medical Branch , Galveston , TX

2. KBR, NASA Johnson Space Center , Houston , TX

3. The Houston Methodist Hospital and Houston Methodist Academic Institute , Houston , TX

4. KBR, NASA Ames Research Center , Moffett Field , CA

Abstract

Abstract The Spaceflight Associated Neuro-ocular Syndrome (SANS) is hypothesized to be associated with microgravity-induced fluid shifts. There is a need for an animal model of SANS to investigate its pathophysiology. We used the rat hindlimb suspension (HS) model to examine the relationship between the assumed cephalad fluid shifts, intraocular (IOP) pressure and the molecular responses in the retina to the prolonged change in body posture. Long evans rats were subjected to HS up to 90 days. Animals completing 90-day suspension were further studied for recovery periods up to 90 additional days in normal posture. With respect to baseline, the average IOP increase in HS animals and the rate of change varied by cohort. Transcriptomics evidence supported a response to HS in the rat retina that was affected by age and sex. Several molecular networks suggested stress imposed by HS affected the retinal vasculature, oxidative and inflammation status, pigmented epithelium and glia. The CSNK1A1-TP53 pathway was implicated in the response in all cohorts. Sex-specific genes were involved in cytoprotection and may explain sex-dependent vulnerabilities to certain eye diseases. These results support the hypothesis that changes in the biology of the retina subjected to simulated microgravity involve both the neural and vascular retina.

Publisher

Walter de Gruyter GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3