A Rapid Fabrication Methodology for Payload Modules, Piloted for the Observation of Queen Honey Bees (Apis mellifera) in Microgravity

Author:

Smith Rachel Soo Hoo1,Kraemer Felix1,Bader Christoph1,Smith Miana2,Weber Aaron3,Simone-Finstrom Michael4,Wilson-Rich Noah3,Oxman Neri1

Affiliation:

1. Media Lab, Department of Architecture , Massachusetts Institute of Technology , Cambridge , MA

2. Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , MA

3. Urban Beekeeping Laboratory & Bee Sanctuary, Inc.

4. United States Department of Agriculture - Agricultural Research Service , Baton-Rouge , LA

Abstract

Abstract Microgravity experiment modules for living organisms have been instrumental to space research, yet their design remains complex and costly. As the private space sector enables more widely available payloads for researchers, it is increasingly necessary to design experimental modules innovatively so that they are proportionately accessible. To ease this bottleneck, we developed a rapid fabrication methodology for producing custom modules compatible with commercial payload slots. Our method creates a unified housing geometry, based on a given component layout, which is fabricated in a digital design and subtractive manufacturing process from a single lightweight foam material. This module design demonstrated a 25–50% reduction in chassis weight compared with existing models, and is extremely competitive in manufacturing time, simplicity, and cost. To demonstrate the ability to capture data on previously limited areas of space biology, we apply this methodology to create an autonomous, video-enabled module for sensing and observing queen and retinue bees aboard the Blue Origin New Shepard 11 (NS-11) suborbital flight. To explore whether spaceflight impacts queen fitness, results used high-definition visual data enabled by the module's compact build to analyze queen-worker regulation under microgravity stress (n = 2, with controls). Overall, this generalizable method for constructing experimental modules provides wider accessibility to space research and new data on honey bee behavior in microgravity.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3