Two New Sliding DTFT Algorithms for Phase Difference Measurement Based on a New Kind of Windows

Author:

Tu Yaqing1,Shen Ting’ao1,Zhang Haitao1,Li Ming1

Affiliation:

1. Department of Information Engineering, Logistical Engineering University, Chongqing 401311, China

Abstract

Abstract For the ultra-low frequency signals or adjacent Nyquist frequency signals, which exist in the vibration engineering domain, the traditional DTFT-based algorithm shows serious bias for phase difference measurement. It is indicated that the spectrum leakage and negative frequency contribution are the essential causes of the bias. In order to improve the phase difference measurement accuracy of the DTFT-based algorithm, two new sliding DTFT algorithms for phase difference measurement based on a new kind of windows are proposed, respectively. Firstly, the new kind of windows developed by convolving conventional rectangular windows is introduced, which obtains a stronger inhibition of spectrum leakage. Then, with negative frequency contribution considered, two new formulas for phase difference calculation under the new kind of windows are derived in detail. Finally, the idea of sliding recursive is proposed to decrease the computational load. The proposed algorithms are easy to be realized and have a higher accuracy than the traditional DTFT-based algorithm. Simulations and engineering applications verified the feasibility and effectiveness of the proposed algorithms.

Publisher

Walter de Gruyter GmbH

Subject

Instrumentation,Biomedical Engineering,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3