Stochastic hydrogeological modelling of fractured rocks: a generic case study in the Mórágy Granite Formation (South Hungary)

Author:

Benedek Kálmán,Dankó Gyula

Abstract

Stochastic hydrogeological modelling of fractured rocks: a generic case study in the Mórágy Granite Formation (South Hungary)In connection with the Hungarian radioactive waste disposal program a detailed study of the mass properties of the potential host rock (granite) has been carried out. Using the results of this study the various parameters (orientation, length, intensity, transmissivity, etc.) describing a fracture set were estimated on the basis of statistical considerations. These estimates served as basic input parameters for stochastic hydrogeological modelling of discrete fracture networks (DFN), which is a strongly developing area of hydrology, providing geologically realistic geometry for site investigations. The synthetic fracture systems generated were tested against some (but not all) field observations. The models built up on the basis of the statistical descriptions showed the same equivalent hydraulic conductivity for the modelled region as the field measurements. In addition, the models reproduce the observed hydraulic head-scattering along vertical boreholes. On the basis of the stochastic simulations of the fracture system some input parameters for the performance assessment of the planned repository were investigated. Calculation of flows into a planned disposal tunnel indicated that if the hydraulic conductivity of the material in the tunnel is the only variable parameter then there are two thresholds: under 1×10-9m/s and above 1×10-5m/s further change of the hydraulic conductivity does not dramatically affect the inflow.

Publisher

Central Library of the Slovak Academy of Sciences

Subject

Geology

Reference45 articles.

1. Andersson J., Berglund J., Follin S., Hakami E., Halvarson J., Hermanson J., Laaksoharju M., Rhén I. & Wahlgren C. 2002: Testing the methodology for site descriptive modelling. Swedish Nuclear Fuel and Waste Management Co., Technical Report, TR-02-19.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3