Classification of Open-End Investment Funds Using Artificial Neural Networks. The Case of Polish Equity Funds

Author:

Perez Katarzyna1ORCID,Szczyt Małgorzata1ORCID

Affiliation:

1. Poznań University of Economics and Business , Poland

Abstract

Abstract In this study we utilise artificial neural networks to classify equity investment funds according to two fundamental risk measures—standard deviation and beta ratio—and to investigate the fund characteristics essential to this classification. Based on a sample of 4,645 monthly observations on 37 equity funds from the largest fund families registered in Poland from December 1995 to March 2018, we allocated funds to one of the classes generated using Multilayer Perceptron (MLP) and Radial Basis Function (RBF). The results of the study confirm the legitimacy of using machine learning as a tool for classifying equity investment funds, though standard deviation turned out to be a better classifier than the beta ratio. In addition to the level of investment risk, the fund classification can be supported by the fund distribution channel, the fund name, age, and size, as well as the current economic situation. We find historical returns (apart from the last-month return) and the net cash flows of the fund to be insignificant for the fund classification.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference43 articles.

1. Bams, D., Otten, R., & Ramezanifar, E. (2015). Mutual Fund Objective Misclassification: Causes and Consequences. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2648375

2. Białous, K., & Truszkowski, J. (2009). Analiza stylu inwestowania polskich funduszy inwestycyjnych. Ruch Prawniczy, Ekonomiczny i Socjologiczny, LXXI(4), 195–223.

3. Broomhead, B. S., & Lowe, D. (1988). Multivariable Functional Interpolation and Adaptive Networks. In Complex Systems 2 (pp. 321–355). https://www.complex-systems.com/abstracts/v02_i03_a05/

4. Brown, K. C., Harlow, W. V., & Zhang, H. (2015). Investment Style Volatility and Mutual Fund Performance. Working Paper. http://faculty.mccombs.utexas.edu/keith.brown/Research/stylevolatility-wp.pdf

5. Brown, S. J., & Goetzmann, W. N. (1997). Mutual fund styles. Journal of Financial Economics, 43(3), 373–399. https://doi.org/10.1016/S0304-405X(96)00898-7

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3