Developing Frameworks for Studies on Sedimentary Fluxes and Budgets in Changing Cold Environments

Author:

Beylich Achim1,Lamoureux Scott2,Decaulne Armelle3

Affiliation:

1. Geological Survey of Norway (NGU), Quaternary Geology & Climate group, Trondheim, Department of Geography, Norway Norwegian University of Science and Technology (NTNU), Trondheim, Norway

2. Department of Geography, Queen's University, Kingston, Canada

3. GEOLAB, Clermont Université, Université Blaise Pascal, Clermont-Ferrand, France CNRS, UMR 6042, GEOLAB, Clermont-Ferrand, France

Abstract

Developing Frameworks for Studies on Sedimentary Fluxes and Budgets in Changing Cold Environments Geomorphic processes that are responsible for the transfer of sediments and landform change are highly dependent on climate and vegetation cover. It is anticipated that climate change will have a major impact on the behaviour of Earth surface systems and that the most profound changes will occur in high-latitude and high-altitude cold environments. Collection, comparison and evaluation of data from a range of different high-latitude and high-altitude cold environments are required to permit greater understanding of sedimentary fluxes in cold environments. The focus of the I.A.G./A.I.G. SEDIBUD (Sediment Budgets in Cold Environments) Programme is the analysis of source-to-sink fluxes and sediment budgets in changing cold environments. Establishing contemporary sediment fluxes in a diversity of cold environments will form a baseline for modelling. At a minimum, baseline information from defined SEDIBUD test sites must consist of measures of mean annual precipitation, stream discharge, suspended load, conductivity/TDS and dominant catchment processes. Reports from ongoing studies on sedimentary fluxes and budgets in three selected study sites in Arctic Canada, sub-Arctic Iceland and sub-Arctic Norway are presented and discussed in the context of effects of climate change on process rates and sediment budgets in sensitive cold environments. Comparable datasets and coordinated data collection and data exchange will be of use for the individual studies at the different study sites. In addition, comparable data sets and data exchange will help to improve our understanding of existing relationships between contemporary climate and sedimentary fluxes and will enable larger-scale integrated investigations on effects of climate change in changing cold environments.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3