Feeding Management Optimization in Livestock Farms with Anaerobic Digestion Plant: A Discrete Stochastic Programming (DSP) Model

Author:

Cecchini Lucio1,Pezzolla Daniela2,Chiorri Massimo1,Gigliotti Giovanni2,Torquati Biancamaria1

Affiliation:

1. Department of Agricultural, Food and Environmental Sciences , University of Perugia , Borgo XX Giugno 74 , , Perugia , Italy

2. Department of Civil and Environmental Engineering , University of Perugia , Via G. Duranti, 93 , , Perugia , Italy

Abstract

Abstract Biogas-based energy production has become a successful strategy for many livestock farms around the world. However, raw materials production is threatened by a growing uncertainty due to effects of climate change on crops cultivation. The aim of this paper is to propose a tool for the optimal design of the biogas mixture, considering respectively the nutritional needs of livestock and the parameters of the biogas process. Within a context of climate variability, a three-stage Discrete Stochastic Programming (DSP) model is applied in a dairy cattle farm with anaerobic digestion plant. This state-contingent approach (DSP model) considers, as uncertain parameters, the watering needs and the yields of forage and energetic crops. The DSP model is compared with equivalent models of expected values to verify the benefits derived from the explicit inclusion of climatic states. The results showed a remarkable improvement in the efficiency of feedstock management, reflecting in a significant reduction in farm costs (11.75 %) compared to the baseline scenario. Whereas, the comparison between the state-contingent approach and the expected value model, showed only slight benefits (0.02 %). This confirms that the DSP model’s ability to offer a better hedged solution increases when high climate variability affects crop yields and irrigation needs.

Publisher

Walter de Gruyter GmbH

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3