Possibilities of Balancing Buildings Energy Demand for Increasing Energy Efficiency in Latvia

Author:

Krumins Andris1,Lebedeva Kristina2,Tamane Antra2,Millers Renars2

Affiliation:

1. Lafivents Ltd. , Bauskas Street 58 , Riga , , Latvia

2. Department of Heat Engineering and Technology , Riga Technical University , Kipsalas Street 6 , Riga , , Latvia

Abstract

Abstract Nowadays national and international directives have focused on improving energy efficiency in the building sector. According to them, energy consumption and emissions of buildings must be reduced. This can be achieved by balancing energy demand in buildings. In this context, this paper proposes a buildings’ energy demand balancing method using the building energy consumption simulation program IDA ICE and real measurements. A 3D model of the building was developed, energy consumption and indoor climate of the building was monitored throughout the year, the behaviour of the occupants (a survey was conducted) was analysed, dynamic change of the weather was studied and all data were integrated into IDA ICE simulation. In order to increase the energy efficiency of buildings, the possibilities of optimization of heat production equipment and heating devices, as well as inspecting and optimization of ventilation and cooling equipment were considered. By adjusting the parameters of the heating system of the researched object, the energy consumption of the auto centre decreased to 39.3 kWh/m2 per year. One of the most popular methods of balancing energy demand in recent years – the creation of smart grids – is also considered.

Publisher

Walter de Gruyter GmbH

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3