Removal of Copper (II) Ions from Polluted Water Using Modified Wheat Bran

Author:

Lomoko Gideon Masedi Nii Ayi1,Paliulis Dainius1,Valters Karlis2

Affiliation:

1. Environmental Protection and Water Engineering Department , Vilnius Gediminas Technical University (Vilnius Tech) , Sauletekio ave. 11, Vilnius, LT-10223 , Lithuania

2. Institute of Energy Systems and Environment , Riga Technical University , Azenes iela 12/1, Riga, LV-1048 , Latvia

Abstract

Abstract The discharge of wastewater containing heavy metals into waterbodies is a major environmental issue that can influence the quality of the water supply; therefore, it is important to remove the pollutants dangerous to living organisms. The adsorption of copper (II) ions on modified wheat bran was investigated with respect to initial solution pH (2.0-7.0), contact time (5–120 min), adsorbent mass (0.5 g and 1.0 g), and initial metal ion concentration (2.0–20 mg/L). The optimum adsorption conditions were found to be at pH 5.0 and a contact time of 60 min with an adsorbent mass of 1.0 g where the maximum efficiency was recorded as 84.5 %. The adsorption uptake (in mg/g) of copper (II) ions slowly reached equilibrium in around 30 min and this amount was 0.30 mg/g using an adsorbent mass of 0.5 g. The adsorption uptake of copper (II) ions decreased with increasing mass of adsorbent and the adsorption efficiency (in %) increased with increasing mass of adsorbent. The experimental results were described using the Langmuir and Freundlich models, with the Langmuir model fitting better than the Freundlich model. The maximum modelled adsorption capacity was 4.24 mg/g and the modelled specific surface area of modified wheat bran was 6.36 m2. It was observed that the adsorption of copper (II) ions on modified wheat bran is efficient and suitable, therefore modified wheat bran is a relatively good adsorbent for the removal of copper (II) ions from polluted water compared to other agricultural adsorbents.

Publisher

Walter de Gruyter GmbH

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3