Multi-objectives Optimal Scheduling in Smart Energy Hub System with Electrical and Thermal Responsive Loads

Author:

Chamandoust Heydar1ORCID,Derakhshan Ghasem1ORCID,Hakimi Seyed Mehdi1ORCID,Bahramara Salah2ORCID

Affiliation:

1. Department of Electrical Engineering , Damavand Branch, Islamic Azad University , Tehran , Iran

2. Department of Electrical Engineering , Sanandaj Branch, Islamic Azad University , Sanandaj , Iran

Abstract

Abstract In this study, multi-objective optimal scheduling of smart energy Hub system (SEHS) in the day ahead is proposed. A SEHS is comprising of interconnected energy hybrid system infrastructures such as electrical, thermal, wind, solar, natural gas and other fuels to supply many types of electrical and thermal loads in a two-way communication platform. All objectives in this paper, are minimized and consist of 1) operation cost and emission polluting in generation side, 2) loss of energy supply probability (LESP) in demand side, and 3) deviation of electrical and thermal loads with the optimal level of electrical and thermal profile in the day ahead. The third objective to flatten electrical and thermal demand profile using Demand Side Management (DSM) by the optimal shifting of electrical and thermal shiftable loads (SLs) is proposed. Also, stochastic modelling of renewable energy sources (RESs) and electrical and thermal loads by Monte Carlo technique is modelled. Using GAMS optimization software, proposed approach by ε -constraint method for obtaining to non-dominated Pareto solutions of objectives is implemented. Moreover, by the decision-making method, the best solution of non-dominated Pareto solutions is selected. Finally, two case studies and sensitivity analysis in case studies for confirmation of the proposed approach are analysed.

Publisher

Walter de Gruyter GmbH

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3