Production of Biodiesel using Calcined Brine Sludge Waste from Chor-Alkali Industry as a Heterogeneous Catalyst

Author:

Mwenge Pascal1,Rutto Hilary1,Enweremadu Christopher2

Affiliation:

1. Clean technology and applied materials research group, Department of Chemical Engineering , Vaal University of Technology , Private Bag X021 , South Africa

2. Department of Mechanical and Industrial Engineering , University of South Africa , Science Campus, Florida 1710 , South Africa

Abstract

Abstract Biodiesel is an environmentally friendly fuel, produced by a transesterification process using homogeneous catalyst which causes water pollution and cannot be recycled. The present study utilizes industrial brine sludge waste (IBSW) as a heterogeneous catalyst in the transesterification of waste cooking oil (WCO) into biodiesel. One variable at a time design was applied to optimize the transesterification process. The process variables were varied as follows: methanol to oil weight ratio (10–50 %), reaction time (0.5–2.5 h), reaction temperature (30–90 °C) and catalyst to oil weight ratio (0.84–4.2 %). The IBSW before and after calcination and the transesterification process was characterized using X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy and scanning electron microscope (SEM). Biodiesel was produced at maximum yield of 95.51 wt% at reaction time, temperature methanol to oil weight ratio, and catalyst to oil weight ratio of 1 hour, 60 °C, 30 wt%, and 2.52 wt% respectively. The FTIR and SEM results confirms that before and after the transesterification process the modification of IBSW took place. Using the ideal process conditions, biodiesel was produced and vital fuel properties such as viscosity, density, pour point and flash point were measured and were found to be within the specification as per American Society for Testing and Material (ASTM) standards for biodiesel. The reusability of the IBSW catalyst was tested by recycling and it can be established that the catalyst can be utilized up to four times without affecting its catalytic activity.

Publisher

Walter de Gruyter GmbH

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3