Cost Effective Method for Toxicity Screening of Pharmaceutical Wastewater Containing Inorganic Salts and Harmful Organic Compounds

Author:

Strade Elina12,Kalnina Daina1

Affiliation:

1. Institute of General Chemical Engineering, Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre , Riga Technical University , Paula Valdena iela 3/7, Riga , LV-1048 , Latvia

2. Laboratory of Industrial Wastewater Treatment Plant , JSC “Grindeks”, Krustpils iela 53, Riga , LV-1057 , Latvia

Abstract

Abstract Pharmaceutical wastewater biological treatment plants are stressed with multi-component wastewater and unexpected variations in wastewater flow, composition and toxicity. To avoid operational problems and reduced wastewater treatment efficiency, accurate monitoring of influent toxicity on activated sludge microorganisms is essential. This paper outlines how to predict highly toxic streams, which should be avoided, using measurements of biochemical oxygen demand (BOD), if they are made in a wide range of initial concentration. The results indicated that wastewater containing multivalent Al3+ cations showed a strong toxic effect on activated sludge biocenosis irrespectively of dilutions, while toxicity of phenol and formaldehyde containing wastewater decreased considerably with increasing dilution. Activated sludge microorganisms were not sensitive to wastewater containing halogenated sodium salts (NaCl, NaF) and showed high treatment capacity of saline wastewater. Our findings confirm that combined indicators of contamination, such as chemical oxygen demand (COD), alone do not allow evaluating potential toxic influence of wastewater. Obtained results allow identifying key inhibitory substances in pharmaceutical wastewater and evaluating potential impact of new wastewater streams or increased loading on biological treatment system. Proposed method is sensitive and cost effective and has potential for practical implementation in multiproduct pharmaceutical wastewater biological treatment plants.

Publisher

Walter de Gruyter GmbH

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3