New Strategies for Intelligent Computing in Improving the Accuracy of Engineering Costs

Author:

Song Yunfei1

Affiliation:

1. Department of Electromechanical Engineering , Hebei Chemical & Pharmaceutical College , Shijiazhuang , Hebei , , China .

Abstract

Abstract Accurate construction cost calculation is crucial for assessing project viability and selecting design programs. This paper enhances calculation accuracy by first employing the Boruta algorithm to identify vital cost-influencing factors, which serve as the basis for an improved construction cost model. We introduce an enhanced Artificial Neural Network (ANN) model that integrates the AdaBoost algorithm and cost-sensitive methods to refine construction cost estimations. The efficacy of this model is demonstrated through its overall engineering cost error rate of 3.92%, with specific errors in single-side cost, labor, materials, and machinery usage at 3.51%, 7.09%, 3.36%, and 7.93%, respectively. These results meet established accuracy standards, showcasing the model’s potential to significantly improve construction cost management and control.

Publisher

Walter de Gruyter GmbH

Reference10 articles.

1. van der Spek, MijndertRoussanaly, SimonRubin, Edward S. (2019). Best practices and recent advances in ccs cost engineering and economic analysis. International Journal of Greenhouse Gas Control, 83.

2. Pienaar, W. (2021). Determination of the cost component in the social cost-benefit analysis of road projects in south africa. South African Journal of Industrial Engineering.

3. Preciado, J. C., Rodriguez-Echeverria, R., Conejero, J. M., Sanchez-Figueroa, F., & Prieto, A. E. (2018). An approach for guesstimating the deployment cost in cloud infrastructures at design phase in web engineering. Journal of Web Engineering (JWE), 17(3-4), 192-208.

4. Hoque, M. I. (2020). Engineering properties and cost comparison among sylhet sand, khustia sand and local sand in the context of foundation engineering. Mechanics of Materials.

5. Wang, B., & Dai, J. (2019). Discussion on the prediction of engineering cost based on improved bp neural network algorithm. Journal of Intelligent and Fuzzy Systems(5).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3