Research on Security Risk Prediction Technology of Electric Power Monitoring System under OT and IT Convergence

Author:

Wei Zhongfeng1,Wei Yifeng2

Affiliation:

1. Chengdu University of Technology , Chengdu , Sichuan , , China .

2. Correspondence College of Sichuan Provincial Party School , Chengdu , Sichuan , , China .

Abstract

Abstract In the quest for more secure power grids, this paper delves into the vital role of power monitoring systems and the burgeoning field of safety risk prediction. Traditional prediction methodologies falter due to slow computation and lackluster accuracy. Enter the XGBoost algorithm, hailed for its stellar performance in various prediction scenarios, yet still ripe for improvement within complex power system data. By marrying Operational Technology (OT) with Information Technology (IT), we elevate the predictive prowess of the XGBoost model. Our investigation, grounded in the analysis of 900 sample datasets, unveils a model with enhanced precision in security risk evaluation. This refined model not only surpasses traditional XGBoost in accuracy—with increased instances of near-perfect predictions—but also excels in vital statistical measures: reducing Mean Absolute Percentage Error (MAPE), lowering Root Mean Square Error (RMSE), and boosting both prediction stability and sensitivity. The introduction of the WOA-XGBoost algorithm marks a significant leap forward in fortifying power monitoring systems’ security and predictive alertness.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3