Modeling Artificial Intelligence in Real-Time Collaborative Piano Playing Systems

Author:

Liu Huiming1

Affiliation:

1. Guangzhou University College of Music and Dance , Guangzhou , Guangdong , , China .

Abstract

Abstract Due to the challenges associated with mastering fundamental piano playing techniques, the inefficiency of self-guided learning, and the prohibitive cost of one-on-one instruction, many novices abandon their musical pursuits prematurely. Our research addresses these issues by enhancing music feature extraction methods through artificial intelligence modeling and developing a piano-playing ability evaluation system. This system leverages an attention mechanism and an LSTM neural network model to assess a player’s abilities based on rhythm, thematic prominence, and musical expression within various levels of piano scores. By analyzing sample tracks from the Thompson Simple Piano Tutorial, our system demonstrates robust performance, achieving an overall F-Measure above 0.9 with an average value of 0.9641. These results indicate that the evaluation system offers precise assessments and can significantly aid piano instruction, providing learners with reliable feedback on their progress.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3