Self-Information Forgery Mining for Face Forgery Detection

Author:

Wang Xiaozhuo1,Wei Jianyu2

Affiliation:

1. Tianjin Vocational Institute , Tianjin , , China .

2. Army Military Transportation University , Tianjin , , China .

Abstract

Abstract In the face of rapid advances in face forgery technology, effective detection methods have become crucial to maintain the authenticity of digital media. Deep learning technology has provided new strategies for recognizing and preventing face forgery in recent years. In this study, a new face forgery detection technique is proposed by utilizing self-information theory, which improves the accuracy and robustness of detection by mining forgery traces, especially in diverse forgery scenarios. The study extracts face features through an improved high-resolution network HRNet and optimizes identity information extraction by combining facial reenactment techniques to detect forged faces efficiently. Experiments have been conducted on several mainstream forged face datasets, and the method presented in this paper can effectively improve the detection performance with an average accuracy of 74.75% on C40 recompressed images. Comparison experiments show that this research method’s frame-level and video-level detection accuracy on the Celeb-DF dataset are 0.9846 and 0.9985, respectively, which are higher than those of existing techniques. Cross-library tests validate the method’s generalization performance, and the AUC metric remains at 0.7305 even in low-quality video environments, which shows good resistance to environmental interference. This study proposes a self-information forgery mining technique that enhances forgery detection accuracy while demonstrating superior generalization ability.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3