Application and Performance Analysis of Deep Learning Models in Power Dispatching Automation

Author:

Yan Liu1,Yucheng Shu1,Kailin Ma1

Affiliation:

1. 1 Shenzhen Power Supply Bureau Co., Ltd ., , Guangdong Shenzhen , China .

Abstract

Abstract Amidst the swift advancement of smart grid technology, traditional power dispatching methods have become inadequate in addressing escalating power needs and intricate system management prerequisites. By incorporating a deep learning model, we have refined these methods, facilitating data-driven dispatching decisions and optimizing power resource allocation and dispatching efficiency. Our experimental outcomes reveal that the Long Short-Term Memory network (LSTM) excels in handling intricate time series data, boasting superior accuracy and convergence rates compared to the Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN). Detailed performance evaluations confirm LSTM’s proficiency in capturing long-term dependencies and processing time series traits inherent in power dispatching data. Furthermore, a 10-fold cross-validation underscores the LSTM model’s stability and generalizability. In essence, this study concludes that in the realm of power dispatching automation, the LSTM deep learning model demonstrates remarkable effectiveness and holds vast potential, anticipating crucial support for the reliable operation and optimal dispatching of the electrical power system (EPS).

Publisher

Walter de Gruyter GmbH

Reference29 articles.

1. Li, H. G. (2018). Research on the high railway power transmission line fault location based on power remote automation system. Journal of Railway Engineering Society, 35(6), 67-71.

2. Chen, J., Zhao, Y., & Qi, B. (2019). Assessment model of risk aversion for power system considering wind power forecasting error. Automation of Electric Power Systems, 43(3), 163-168.

3. Luo, G., Qiao, H., & Shen, C. (2018). Greedy algorithm based automatic searching method for controlled islanding surface of power system part one: Index system of islanding control and design of algorithm. Automation of Electric Power Systems, 42(19), 112-117.

4. Yang, D., Wei, H., & Zhu, Y. (2019). Virtual private cloud based power-dispatching automation system—architecture and application. IEEE Transactions on Industrial Informatics, 15(3), 1756-1766.

5. Tao, Y. U., Chen, Y. X., & Zhang, X. S. (2018). Many-objective optimization dispatching strategy for power system considering the temporal and spatial distribution of different pollutants. Scientia Sinica Technologica, 48(7), 755-772.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3