Deep learning-based intelligent control of moisture at the exit of blade charging process in cigarette production

Author:

Rui Jinsheng1,Qiu Dongchen1,Hou Shicong1,Rong Jing1,Qin Xiaoxiao1,Fan Jianan1,Wu Kai1,Zhao Guoliang1,Zhu Chengwen1

Affiliation:

1. 1 China Tobacco Jiangsu Industrial Co., Ltd ., Nanjing , Jiangsu , , China .

Abstract

Abstract Currently, in the production of cigarettes in the blade, charging export moisture control means is relatively single and can not effectively guarantee the excellent quality of cigarette filament. In this paper, first of all, the working principle of the tobacco blade charging machine is introduced, and the moisture of the tobacco leaf for the charging machine is dynamically analyzed, and the influence of the return air temperature control of the charging machine on the export moisture of the blade charging process is explored. Secondly, based on the traditional PID controller, an adaptive fuzzy PID controller is established by combining adaptive fuzzy rules, and then the stacked noise-reducing self-encoder in deep learning is combined with the adaptive fuzzy PID control to design the intelligent control structure of export moisture of leaf charging process. Finally, the effectiveness of export moisture intelligence control, process capability index, and the effect before and after application were analyzed in controlled experiments, respectively. The results show that the difference between the predicted value and the real value of blade export moisture in this paper’s method is only 0.5%, and the process capability index of this paper’s method is improved by 1.48 compared with the PID controller, and it can control the temperature of the return air of the charging machine in the range of 56.86℃~57.21℃. The intelligent control method of export moisture introduced by deep learning can accurately control the export moisture of the leaf dosing process, which effectively ensures the quality of tobacco filament making.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3