Research on Innovative Models of Second Language Teaching in the Age of Artificial Intelligence

Author:

Chen Lin1

Affiliation:

1. 1 Faculty of Foreign Languages , Anyang University , Anyang , Henan , , China .

Abstract

Abstract This study explores advanced models for second language instruction within the artificial intelligence landscape, spotlighting the integration of mixed quantile regression and Bayesian inference to refine teaching strategies and bolster learning achievements. By adopting mixed quantile regression, this research constructs a model that surpasses traditional assumptions of normality, enabling the handling of complex, multilevel heterogeneous data. Bayesian inference was applied for parameter estimation, enhancing the precision and reliability of our findings. An empirical investigation involving 658 students from College M revealed an average adaptability score in second language learning of 3.663, with all dimensions scoring above 3—learning attitude ranking highest at 3.956. Key factors influencing learning capacity, including motivation, intellectual literacy, self-efficacy, and the availability of resources, demonstrated a positive correlation. These findings suggest the potential of mixed quantile regression and Bayesian inference in assessing learning adaptability and determinants, offering a novel approach to AI-supported second language education.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3