Experimental teaching design of weightlessness method to determine the corrosion rate of metal

Author:

Zhao Jianhua1,Ke Yaobin2,Liao Junjie1,Guo Runjie1

Affiliation:

1. School of New Energy and Materials , Southwest Petroleum University , Nanchong , Sichuan , , China .

2. Department of Teacher Education , Nanchong Vocational and Technical College , Nanchong , Sichuan , , China .

Abstract

Abstract When exposed to corrosive environments, metals, which are relatively common industrial materials, undergo serious corrosion, leading to significant economic losses. Therefore, studying the corrosion rate of metals in their early stages holds great pedagogical significance. This study employs a standard specimen of 20# steel as an experimental object, designing the experimental teaching of metal corrosion rate under varying temperatures, PH levels, and hydrated salt materials. The weightlessness method determines the overall corrosion rate of the metal, while the electrochemical method determines the localized corrosion rate of the metal. When the experimental temperature is 80℃ and 100℃, the corrosion rate of 20# steel is the largest; both are 0.00800g·m−2·d−1, and the charge transfer resistance increases gradually when the temperature is −20℃~5℃, and decreases gradually when the temperature is 5℃~100℃. The corrosion rate of the metal did not change much at pH=7 and 8, and the corrosion rate reached 0.688 mm/a, and the impedance curve polarization resistance Rp was the smallest when pH=5, and its corrosion resistance was poor under acidic conditions. The average corrosion rates in MgSO4·7H2O, and CaCl2·6H2O and Ba(OH)2·8H2O were 0.0030g/m−2h−1, 0.0018g/m−2h−1, and 0.0050 g/m−2h−1, respectively. Teaching experiments were used to carry out the present study. The study aims to let students experience the process of metal corrosion through teaching experiments and better help them solve cognitive difficulties in metal corrosion.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3