A study of periodic solutions of several types of nonlinear models in biomathematics

Author:

Du Mingyin1

Affiliation:

1. 1 Department of Basic Education , Zhengzhou Technology and Business University , Zhengzhou , Henan , , China .

Abstract

Abstract Biomathematics is a cross-discipline formed by the interpenetration of mathematics with life sciences, biology, and other disciplines, and biomathematical models provide an effective tool for solving problems in the above application areas. Our aim in this paper is to combine mathematical analytical tools and numerical simulation methods to investigate the existence and steady state of periodic solutions in different nonlinear models. Time lags with both discrete and distributed characteristics are introduced into the Lotka-Volterra predator-feeder system, and based on the discussion of the central manifold theorem and canonical type theory, it is proved that the branching periodic solution exists when the discrete time lag parameter τ > τ 0. In the SEIRS infectious disease model with nonlinear incidence term and vertical transmission, the global stability of the disease-free equilibrium point and the local asymptotic stability of the endemic equilibrium point are analyzed through the computation and discussion of the fundamental regeneration number R 0 (p, q). A class of convergence-growth models with nonlinear sensitivity functions is studied, and the global boundedness of classical solutions and their conditions are demonstrated based on global dynamics. A mathematical generalization of the muscular vascular model is made by introducing a centralized parameter, the relationship between periodic solutions and chaotic phenomena is explored utilizing a systematic equivalence transformation, and the equation of the homoscedastic orbitals is deduced to be z 2 = x 2 ( A - 1 2 x 2 ) {z^2} = {x^2}\left( {A - {1 \over 2}{x^2}} \right) .

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3