Visualization research of modern ceramic production art based on 3D modeling technology

Author:

Ye Yangqiu1

Affiliation:

1. College of Fine Arts , Huaqiao University , Quanzhou , Fujian , , China .

Abstract

Abstract This paper is based on the research of visual shell related technology of 3D modeling method to extract the corresponding points of the graphical shell, through matching, filtering and denoising operations, to obtain the accurate 3D visualization model and provide new creative ideas and paths for contemporary ceramic art. In the actual ceramic membrane visualization feature extraction, six feature quantities of ceramic membrane, namely, area, aspect ratio, area perimeter, circularity, diagonal length, and angular second-order moments, can be obtained. The application of the visualization technique proposed in this paper to teaching ceramic production art was assessed by the performance of the knowledge answer questions. Regarding the average score, the experimental group (75.5) performed significantly better than the control group (63.6). Significant differences were found between the experimental and control groups in mental rotation (P=0.03<0.05), spatial visualization (P=0.006<0.05), and spatial reasoning skills (F=6.98, P=0.014<0.05). However, the two groups had no significant difference in spatial orientation (P=0.13>0.05). This suggests that the immersive learning environment of visualization technology can significantly enhance learners’ spatial reasoning skills, mental rotation, and spatial orientation.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3