Student Sentiment Analysis and Classroom Feedback Prediction Using Deep Learning

Author:

Wang Peisong1

Affiliation:

1. High Fashion Womenswear Institute, Hangzhou Vocational & Technical College , Hangzhou , Zhejiang , , China .

Abstract

Abstract The application of deep learning is becoming a research hotspot in education, especially in student sentiment analysis and classroom feedback prediction. Accurate sentiment analysis can help teachers understand their students’ learning status and improve their teaching effectiveness. In this study, we explored students’ emotional changes in different teaching environments through face detection technology and facial expression recognition. We predicted their feedback on classroom content, which optimized the teaching methods and enhanced students’ learning experience. The research methodology includes using the MTCNN face detection algorithm to locate students’ faces and analyzing facial expressions to recognize their emotional states through an improved deep learning model. In this study, the method was able to identify primary emotional states of students, including happiness, sadness, and surprise, with an accuracy of 85%. After analyzing the link between students’ emotions and classroom engagement, the study discovered that students’ positive emotional states were positively associated with high levels of classroom engagement. Student sentiment analysis is used to propose a classroom feedback prediction model that can predict student feedback on classroom content with 72% accuracy in this study. This paper utilizes deep learning to analyze student sentiment and predict classroom feedback, which improves teaching effectiveness and enhances students’ learning experience.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3