An Exploration of the Application of Principal Component Analysis in Big Data Processing

Author:

Li Guo1,Qin Yi1

Affiliation:

1. College of Intelligent Manufacturing and Electrical Engineering , Nanyang Normal University , Nanyang , Henan , , China .

Abstract

Abstract With the arrival of the significant data era, efficiently processing large-scale multidimensional data has become challenging. As a powerful data dimensionality reduction tool, Principal Component Analysis (PCA) plays a vital role in big data processing, especially in information extraction and data simplification, showing unique advantages. The research aims to simplify the data processing process and improve the data processing efficiency by PCA method. The research method adopts the basic theory of PCA, the improvement of the weighted principal component analysis algorithm, and standardized and homogenized data processing techniques to process large-scale multidimensional data sets. The results show that the data dimensionality is significantly reduced after using PCA, for example, in the Analysis of the earnings quality of listed companies in the e-commerce industry, the cumulative variance contribution rate of the first four principal components extracted by PCA reaches 81.623%, which effectively removes the primary information of the original data. PCA not only reduces the complexity of the data, but also retains a large amount of crucial information, which is a significant application value for the processing of big data, especially in the fields of data compression and pattern recognition.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3