Applying Deep Learning Algorithms for Automatic Recognition and Transcription of Texts in Oracle Bones and Golden Texts

Author:

Qiao Yingjie1,Xing Lizhi2

Affiliation:

1. School of Art and Design, Luoyang University of Science and Technology, Research Center of Chinese Historical Civilization Inheritance and Innovation, Luoyang University of Science and Technology , Luoyang , Henan , , China .

2. The Yellow River Civilization and the Sustainable Development of Henan University Research Center, Research Center of Chinese Historical Civilization Inheritance and Innovation , Luoyang University of Science and Technology , Luoyang , Henan , , China .

Abstract

Abstract This paper explores applying deep learning techniques for automatically recognizing and transcribing oracle bone and gold texts. We significantly enhance model recognition efficiency by leveraging the power of Generative Adversarial Networks (GANs) for image data enhancement and the Pix2Pix model for text repair. Our approach integrates the ResNet50 model for robust feature extraction with unsupervised domain adaptation, utilizing multiple pseudo labels to achieve efficient text recognition and transcription. We improve the model’s repair capabilities by generating hard-to-distinguish sample data through GANs and employing a U-Net-based text repair model enhanced with dense connectivity and spectral normalization. Further, combining ResNet50 for feature extraction and advanced domain adaptation techniques strengthens the model’s generalization. Our results on the Oracle dataset show an increase in recognition accuracy from 82% to 94.5%, highlighting the effectiveness of our image enhancement strategies. The ResNet50 extractor outperforms others across various Intersection over Union (IoU) metrics, establishing its feature extraction superiority. In real-world scenarios, testing with a combined Oracle and Jinwen dataset yields a recognition accuracy above 80%, demonstrating our model’s ability to effectively fulfill the recognition task. This research underscores the potential of deep learning algorithms in automating the recognition and transcription of ancient texts, offering a novel solution that significantly boosts recognition accuracy through a synergistic blend of image enhancement, feature extraction, and domain adaptation techniques.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Oracle Bone Inscription Segmentation and Recognition Model Based on Deep Learning;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3